Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Inactivation of mammalian target of rapamycin increases STAT1 nuclear content and transcriptional activity in alpha4- and protein phosphatase 2A-dependent fashion.

Identifieur interne : 001514 ( Main/Exploration ); précédent : 001513; suivant : 001515

Inactivation of mammalian target of rapamycin increases STAT1 nuclear content and transcriptional activity in alpha4- and protein phosphatase 2A-dependent fashion.

Auteurs : Jill A. Fielhaber [Canada] ; Ying-Shan Han ; Jason Tan ; Shuo Xing ; Catherine M. Biggs ; Kwang-Bo Joung ; Arnold S. Kristof

Source :

RBID : pubmed:19553685

Descripteurs français

English descriptors

Abstract

Target of rapamycin (TOR) is a highly conserved serine/threonine kinase that controls cell growth, primarily via regulation of protein synthesis. In Saccharomyces cerevisiae, TOR can also suppress the transcription of stress response genes by a mechanism involving Tap42, a serine/threonine phosphatase subunit, and the transcription factor Msn2. A physical association between mammalian TOR (mTOR) and the transcription factor signal transducer and activator of transcription-1 (STAT1) was recently identified in human cells, suggesting a similar role for mTOR in the transcription of interferon-gamma-stimulated genes. In the current study, we identified a macromolecular protein complex composed of mTOR, STAT1, the Tap42 homologue alpha4, and the protein phosphatase 2A catalytic subunit (PP2Ac). Inactivation of mTOR enhanced its association with STAT1 and increased STAT1 nuclear content in PP2Ac-dependent fashion. Depletion of alpha4, PP2A, or mTOR enhanced the induction of early (i.e. IRF-1) and late (i.e. caspase-1, hiNOS, and Fas) STAT1-dependent genes. The regulation of IRF-1 or caspase-1 by mTOR was independent of other known mTOR effectors p70 S6 kinase and Akt. These results describe a new role for mTOR and alpha4/PP2A in the control of STAT1 nuclear content, and the expression of interferon-gamma-sensitive genes involved in immunity and apoptosis.

DOI: 10.1074/jbc.M109.033530
PubMed: 19553685
PubMed Central: PMC2782027


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Inactivation of mammalian target of rapamycin increases STAT1 nuclear content and transcriptional activity in alpha4- and protein phosphatase 2A-dependent fashion.</title>
<author>
<name sortKey="Fielhaber, Jill A" sort="Fielhaber, Jill A" uniqKey="Fielhaber J" first="Jill A" last="Fielhaber">Jill A. Fielhaber</name>
<affiliation wicri:level="4">
<nlm:affiliation>Critical Care and Respiratory Divisions and Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Critical Care and Respiratory Divisions and Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, Quebec H3A 1A1</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Han, Ying Shan" sort="Han, Ying Shan" uniqKey="Han Y" first="Ying-Shan" last="Han">Ying-Shan Han</name>
</author>
<author>
<name sortKey="Tan, Jason" sort="Tan, Jason" uniqKey="Tan J" first="Jason" last="Tan">Jason Tan</name>
</author>
<author>
<name sortKey="Xing, Shuo" sort="Xing, Shuo" uniqKey="Xing S" first="Shuo" last="Xing">Shuo Xing</name>
</author>
<author>
<name sortKey="Biggs, Catherine M" sort="Biggs, Catherine M" uniqKey="Biggs C" first="Catherine M" last="Biggs">Catherine M. Biggs</name>
</author>
<author>
<name sortKey="Joung, Kwang Bo" sort="Joung, Kwang Bo" uniqKey="Joung K" first="Kwang-Bo" last="Joung">Kwang-Bo Joung</name>
</author>
<author>
<name sortKey="Kristof, Arnold S" sort="Kristof, Arnold S" uniqKey="Kristof A" first="Arnold S" last="Kristof">Arnold S. Kristof</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19553685</idno>
<idno type="pmid">19553685</idno>
<idno type="doi">10.1074/jbc.M109.033530</idno>
<idno type="pmc">PMC2782027</idno>
<idno type="wicri:Area/Main/Corpus">001499</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001499</idno>
<idno type="wicri:Area/Main/Curation">001499</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001499</idno>
<idno type="wicri:Area/Main/Exploration">001499</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Inactivation of mammalian target of rapamycin increases STAT1 nuclear content and transcriptional activity in alpha4- and protein phosphatase 2A-dependent fashion.</title>
<author>
<name sortKey="Fielhaber, Jill A" sort="Fielhaber, Jill A" uniqKey="Fielhaber J" first="Jill A" last="Fielhaber">Jill A. Fielhaber</name>
<affiliation wicri:level="4">
<nlm:affiliation>Critical Care and Respiratory Divisions and Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Critical Care and Respiratory Divisions and Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, Quebec H3A 1A1</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Han, Ying Shan" sort="Han, Ying Shan" uniqKey="Han Y" first="Ying-Shan" last="Han">Ying-Shan Han</name>
</author>
<author>
<name sortKey="Tan, Jason" sort="Tan, Jason" uniqKey="Tan J" first="Jason" last="Tan">Jason Tan</name>
</author>
<author>
<name sortKey="Xing, Shuo" sort="Xing, Shuo" uniqKey="Xing S" first="Shuo" last="Xing">Shuo Xing</name>
</author>
<author>
<name sortKey="Biggs, Catherine M" sort="Biggs, Catherine M" uniqKey="Biggs C" first="Catherine M" last="Biggs">Catherine M. Biggs</name>
</author>
<author>
<name sortKey="Joung, Kwang Bo" sort="Joung, Kwang Bo" uniqKey="Joung K" first="Kwang-Bo" last="Joung">Kwang-Bo Joung</name>
</author>
<author>
<name sortKey="Kristof, Arnold S" sort="Kristof, Arnold S" uniqKey="Kristof A" first="Arnold S" last="Kristof">Arnold S. Kristof</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing (genetics)</term>
<term>Adaptor Proteins, Signal Transducing (metabolism)</term>
<term>Apoptosis (genetics)</term>
<term>Apoptosis (immunology)</term>
<term>Cell Line (MeSH)</term>
<term>Cell Nucleus (genetics)</term>
<term>Cell Nucleus (immunology)</term>
<term>Cell Nucleus (metabolism)</term>
<term>Gene Expression Regulation (genetics)</term>
<term>Gene Expression Regulation (immunology)</term>
<term>Humans (MeSH)</term>
<term>Intracellular Signaling Peptides and Proteins (MeSH)</term>
<term>Molecular Chaperones (MeSH)</term>
<term>Multiprotein Complexes (genetics)</term>
<term>Multiprotein Complexes (immunology)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Protein Kinases (genetics)</term>
<term>Protein Kinases (immunology)</term>
<term>Protein Kinases (metabolism)</term>
<term>Protein Phosphatase 2 (genetics)</term>
<term>Protein Phosphatase 2 (immunology)</term>
<term>Protein Phosphatase 2 (metabolism)</term>
<term>Proto-Oncogene Proteins c-akt (genetics)</term>
<term>Proto-Oncogene Proteins c-akt (immunology)</term>
<term>Proto-Oncogene Proteins c-akt (metabolism)</term>
<term>Ribosomal Protein S6 Kinases, 70-kDa (genetics)</term>
<term>Ribosomal Protein S6 Kinases, 70-kDa (immunology)</term>
<term>Ribosomal Protein S6 Kinases, 70-kDa (metabolism)</term>
<term>STAT1 Transcription Factor (genetics)</term>
<term>STAT1 Transcription Factor (immunology)</term>
<term>STAT1 Transcription Factor (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>TOR Serine-Threonine Kinases (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Apoptose (génétique)</term>
<term>Apoptose (immunologie)</term>
<term>Chaperons moléculaires (MeSH)</term>
<term>Complexes multiprotéiques (génétique)</term>
<term>Complexes multiprotéiques (immunologie)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Facteur de transcription STAT-1 (génétique)</term>
<term>Facteur de transcription STAT-1 (immunologie)</term>
<term>Facteur de transcription STAT-1 (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Lignée cellulaire (MeSH)</term>
<term>Noyau de la cellule (génétique)</term>
<term>Noyau de la cellule (immunologie)</term>
<term>Noyau de la cellule (métabolisme)</term>
<term>Protein Phosphatase 2 (génétique)</term>
<term>Protein Phosphatase 2 (immunologie)</term>
<term>Protein Phosphatase 2 (métabolisme)</term>
<term>Protein kinases (génétique)</term>
<term>Protein kinases (immunologie)</term>
<term>Protein kinases (métabolisme)</term>
<term>Protéines adaptatrices de la transduction du signal (génétique)</term>
<term>Protéines adaptatrices de la transduction du signal (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines et peptides de signalisation intracellulaire (MeSH)</term>
<term>Protéines proto-oncogènes c-akt (génétique)</term>
<term>Protéines proto-oncogènes c-akt (immunologie)</term>
<term>Protéines proto-oncogènes c-akt (métabolisme)</term>
<term>Ribosomal Protein S6 Kinases, 70-kDa (génétique)</term>
<term>Ribosomal Protein S6 Kinases, 70-kDa (immunologie)</term>
<term>Ribosomal Protein S6 Kinases, 70-kDa (métabolisme)</term>
<term>Régulation de l'expression des gènes (génétique)</term>
<term>Régulation de l'expression des gènes (immunologie)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sérine-thréonine kinases TOR (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>Multiprotein Complexes</term>
<term>Protein Kinases</term>
<term>Protein Phosphatase 2</term>
<term>Proto-Oncogene Proteins c-akt</term>
<term>Ribosomal Protein S6 Kinases, 70-kDa</term>
<term>STAT1 Transcription Factor</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Multiprotein Complexes</term>
<term>Protein Kinases</term>
<term>Protein Phosphatase 2</term>
<term>Proto-Oncogene Proteins c-akt</term>
<term>Ribosomal Protein S6 Kinases, 70-kDa</term>
<term>STAT1 Transcription Factor</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>Multiprotein Complexes</term>
<term>Protein Kinases</term>
<term>Protein Phosphatase 2</term>
<term>Proto-Oncogene Proteins c-akt</term>
<term>Ribosomal Protein S6 Kinases, 70-kDa</term>
<term>STAT1 Transcription Factor</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Apoptosis</term>
<term>Cell Nucleus</term>
<term>Gene Expression Regulation</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Apoptose</term>
<term>Complexes multiprotéiques</term>
<term>Facteur de transcription STAT-1</term>
<term>Noyau de la cellule</term>
<term>Protein Phosphatase 2</term>
<term>Protein kinases</term>
<term>Protéines adaptatrices de la transduction du signal</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines proto-oncogènes c-akt</term>
<term>Ribosomal Protein S6 Kinases, 70-kDa</term>
<term>Régulation de l'expression des gènes</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Apoptose</term>
<term>Complexes multiprotéiques</term>
<term>Facteur de transcription STAT-1</term>
<term>Noyau de la cellule</term>
<term>Protein Phosphatase 2</term>
<term>Protein kinases</term>
<term>Protéines proto-oncogènes c-akt</term>
<term>Ribosomal Protein S6 Kinases, 70-kDa</term>
<term>Régulation de l'expression des gènes</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Apoptosis</term>
<term>Cell Nucleus</term>
<term>Gene Expression Regulation</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Nucleus</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexes multiprotéiques</term>
<term>Facteur de transcription STAT-1</term>
<term>Noyau de la cellule</term>
<term>Protein Phosphatase 2</term>
<term>Protein kinases</term>
<term>Protéines adaptatrices de la transduction du signal</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines proto-oncogènes c-akt</term>
<term>Ribosomal Protein S6 Kinases, 70-kDa</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line</term>
<term>Humans</term>
<term>Intracellular Signaling Peptides and Proteins</term>
<term>Molecular Chaperones</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chaperons moléculaires</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Protéines et peptides de signalisation intracellulaire</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Target of rapamycin (TOR) is a highly conserved serine/threonine kinase that controls cell growth, primarily via regulation of protein synthesis. In Saccharomyces cerevisiae, TOR can also suppress the transcription of stress response genes by a mechanism involving Tap42, a serine/threonine phosphatase subunit, and the transcription factor Msn2. A physical association between mammalian TOR (mTOR) and the transcription factor signal transducer and activator of transcription-1 (STAT1) was recently identified in human cells, suggesting a similar role for mTOR in the transcription of interferon-gamma-stimulated genes. In the current study, we identified a macromolecular protein complex composed of mTOR, STAT1, the Tap42 homologue alpha4, and the protein phosphatase 2A catalytic subunit (PP2Ac). Inactivation of mTOR enhanced its association with STAT1 and increased STAT1 nuclear content in PP2Ac-dependent fashion. Depletion of alpha4, PP2A, or mTOR enhanced the induction of early (i.e. IRF-1) and late (i.e. caspase-1, hiNOS, and Fas) STAT1-dependent genes. The regulation of IRF-1 or caspase-1 by mTOR was independent of other known mTOR effectors p70 S6 kinase and Akt. These results describe a new role for mTOR and alpha4/PP2A in the control of STAT1 nuclear content, and the expression of interferon-gamma-sensitive genes involved in immunity and apoptosis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19553685</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>10</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>284</Volume>
<Issue>36</Issue>
<PubDate>
<Year>2009</Year>
<Month>Sep</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Inactivation of mammalian target of rapamycin increases STAT1 nuclear content and transcriptional activity in alpha4- and protein phosphatase 2A-dependent fashion.</ArticleTitle>
<Pagination>
<MedlinePgn>24341-53</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M109.033530</ELocationID>
<Abstract>
<AbstractText>Target of rapamycin (TOR) is a highly conserved serine/threonine kinase that controls cell growth, primarily via regulation of protein synthesis. In Saccharomyces cerevisiae, TOR can also suppress the transcription of stress response genes by a mechanism involving Tap42, a serine/threonine phosphatase subunit, and the transcription factor Msn2. A physical association between mammalian TOR (mTOR) and the transcription factor signal transducer and activator of transcription-1 (STAT1) was recently identified in human cells, suggesting a similar role for mTOR in the transcription of interferon-gamma-stimulated genes. In the current study, we identified a macromolecular protein complex composed of mTOR, STAT1, the Tap42 homologue alpha4, and the protein phosphatase 2A catalytic subunit (PP2Ac). Inactivation of mTOR enhanced its association with STAT1 and increased STAT1 nuclear content in PP2Ac-dependent fashion. Depletion of alpha4, PP2A, or mTOR enhanced the induction of early (i.e. IRF-1) and late (i.e. caspase-1, hiNOS, and Fas) STAT1-dependent genes. The regulation of IRF-1 or caspase-1 by mTOR was independent of other known mTOR effectors p70 S6 kinase and Akt. These results describe a new role for mTOR and alpha4/PP2A in the control of STAT1 nuclear content, and the expression of interferon-gamma-sensitive genes involved in immunity and apoptosis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fielhaber</LastName>
<ForeName>Jill A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Critical Care and Respiratory Divisions and Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Ying-Shan</ForeName>
<Initials>YS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tan</LastName>
<ForeName>Jason</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xing</LastName>
<ForeName>Shuo</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Biggs</LastName>
<ForeName>Catherine M</ForeName>
<Initials>CM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Joung</LastName>
<ForeName>Kwang-Bo</ForeName>
<Initials>KB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kristof</LastName>
<ForeName>Arnold S</ForeName>
<Initials>AS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 CA125436-01A1</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>5R01CA125436</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA125436-02</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA125436-03</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>69007</GrantID>
<Agency>Canadian Institutes of Health Research</Agency>
<Country>Canada</Country>
</Grant>
<Grant>
<GrantID>R01 CA125436</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>06</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048868">Adaptor Proteins, Signal Transducing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C490467">IGBP1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047908">Intracellular Signaling Peptides and Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018832">Molecular Chaperones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050794">STAT1 Transcription Factor</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C494079">STAT1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C100984">TAP42 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="C546842">MTOR protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D051057">Proto-Oncogene Proteins c-akt</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D038762">Ribosomal Protein S6 Kinases, 70-kDa</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.16</RegistryNumber>
<NameOfSubstance UI="C517189">PPP2CA protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.16</RegistryNumber>
<NameOfSubstance UI="D054648">Protein Phosphatase 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D048868" MajorTopicYN="N">Adaptor Proteins, Signal Transducing</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017209" MajorTopicYN="N">Apoptosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047908" MajorTopicYN="N">Intracellular Signaling Peptides and Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018832" MajorTopicYN="N">Molecular Chaperones</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054648" MajorTopicYN="N">Protein Phosphatase 2</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051057" MajorTopicYN="N">Proto-Oncogene Proteins c-akt</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038762" MajorTopicYN="N">Ribosomal Protein S6 Kinases, 70-kDa</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050794" MajorTopicYN="N">STAT1 Transcription Factor</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19553685</ArticleId>
<ArticleId IdType="pii">M109.033530</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M109.033530</ArticleId>
<ArticleId IdType="pmc">PMC2782027</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Oct 16;25(48):6392-415</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 17;275(46):35727-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10940301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14340-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11114166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2001 Apr 15;61(8):3373-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11309295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 16;276(11):8445-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11112784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2002 Feb 1;168(3):1226-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11801659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 31;277(22):19408-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11909852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Aug;22(15):5575-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12101249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2002 Aug;26(3):223-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12165425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2002 Sep;3(9):859-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1348-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jun;11(6):1467-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jun;11(6):1491-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Biol Ther. 2003 May-Jun;2(3):222-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12878853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Sep 5;278(36):33637-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12807916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2003 Nov;3(11):900-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2004 Apr;6(4):358-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15048128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Endocrinol. 2007 Jan 15;263(1-2):10-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17084018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2007 Mar;19(3):454-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17085014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytokine Growth Factor Rev. 2007 Oct-Dec;18(5-6):511-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17683973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 29;450(7170):736-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18046414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2008 Jan 10;358(2):140-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18184959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2004 Apr;14(2):210-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15196469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Oct 22;306(5696):695-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15499020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11455-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1837150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Jan 1;13(1):158-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8306959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1995 Aug 17;376(6541):596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7637809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10624-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9380685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 1998 Jul 15;92(2):539-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9657754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1998 Oct 20;251(2):520-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9792806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4438-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10200280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Aug 20;274(34):24038-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10446173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Chromosomes Cancer. 2005 Mar;42(3):213-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15578690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2005 May;5(5):375-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15864272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2005 Aug;5(8):593-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16056253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2005 Sep;33(3):227-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Dec 30;280(52):43087-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Aug 18;281(33):23958-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16687394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Aug 17;442(7104):779-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16915281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Aug 31;442(7106):1058-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16900101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2006 Sep;10(3):215-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2000 May 15;19(21):2628-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10851062</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Québec</li>
</region>
<settlement>
<li>Montréal</li>
</settlement>
<orgName>
<li>Université McGill</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Biggs, Catherine M" sort="Biggs, Catherine M" uniqKey="Biggs C" first="Catherine M" last="Biggs">Catherine M. Biggs</name>
<name sortKey="Han, Ying Shan" sort="Han, Ying Shan" uniqKey="Han Y" first="Ying-Shan" last="Han">Ying-Shan Han</name>
<name sortKey="Joung, Kwang Bo" sort="Joung, Kwang Bo" uniqKey="Joung K" first="Kwang-Bo" last="Joung">Kwang-Bo Joung</name>
<name sortKey="Kristof, Arnold S" sort="Kristof, Arnold S" uniqKey="Kristof A" first="Arnold S" last="Kristof">Arnold S. Kristof</name>
<name sortKey="Tan, Jason" sort="Tan, Jason" uniqKey="Tan J" first="Jason" last="Tan">Jason Tan</name>
<name sortKey="Xing, Shuo" sort="Xing, Shuo" uniqKey="Xing S" first="Shuo" last="Xing">Shuo Xing</name>
</noCountry>
<country name="Canada">
<region name="Québec">
<name sortKey="Fielhaber, Jill A" sort="Fielhaber, Jill A" uniqKey="Fielhaber J" first="Jill A" last="Fielhaber">Jill A. Fielhaber</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001514 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001514 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19553685
   |texte=   Inactivation of mammalian target of rapamycin increases STAT1 nuclear content and transcriptional activity in alpha4- and protein phosphatase 2A-dependent fashion.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19553685" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020